Is 3α-androstenol pheromone related to menstrual synchrony?

Shayesteh Jahanfar, Che Haslinawati Che Awang, Raihan Abd Rahman, Rinni Damayanti Samsuddin, Chin Pui See

Abstract

Background and methodology The ovarian cycles of females living and interacting together may synchronise due to pheromones released from axillary secretory glands, the highest concentration of which is produced in the mid-follicular phase, prior to ovulation. The objective of this study was to find evidence for menstrual synchrony in a group of female students living together and to obtain a correlation between the ability to smell the putative pheromone, 5α-androst-16-en-3α-ol (3α-androstenol), found in apocrine secretions and menstrual synchrony. This cross-sectional study involved 88 students who completed a standard questionnaire and whose sense of smell was measured using ten varying thresholds. The menstrual history, friendship scale and menstrual hygiene score was determined for the participants.

Introduction

Menstrual synchrony was first demonstrated among 135 women students at Wellesley College, MA, USA who lived as roommates.1 A follow-up experiment, involving exposing women to chemical compounds from the armpits of other women, altered menstruation.2 Subsequently many other studies have supported synchronised menstrual cycles between friends, mothers and daughters and Bedoun families.3 In most of these studies, women who spent more time together or who lived closely together were most likely to show menstrual synchrony. The source of this ovarian synchrony has been investigated by some researchers4–6 and it has been postulated that environmental triggers such as pheromones can harmonise the ovarian rhythms. The synchronisation of ovulation time as a result of females living together shows how sensitive the ovarian rhythms. The synchronisation of ovulation time may be related to various factors. The results failed to demonstrate any significant difference between synchronised and non-synchronised subjects in detecting the steroid by sense of smell. However, the odours associated with menstrual blood or vaginal discharge might have an affect on menstrual synchrony.

Methods

This cross-sectional study was conducted among 88 medical and nursing students at the Royal College of Medicine, Perak (RCMP) in Malaysia. The unique characteristic of this group of students is that they live in houses with five to eight rooms and only female students share rooms, often spending long periods (12–16 hours) participating in academic activities together. The study participants were medical or biomedical students who were aware of their menstrual dates and who marked their calendars or could recall their exact cycle dates. One of the pheromones found in female axillary secretions is a steroid, 5α-androst-16-en-3α-ol (3α-androstenol). This steroid with a musk-like smell or a floral odour acts as a pheromone in other species such as pig, bear or other lower mammals and human.9 If the hypothalamus is the centre for both receiving olfactory triggers and secreting luteinising hormone there is a possibility that smelling pheromones such as androstenadienone may be closely involved with the regulation of reproductive functions.

This study aimed to investigate the ability to smell putative pheromones such as 3α-androstenol and their relationship to menstrual synchrony.

Results

A total of 59.1% of the subjects studied were found to have menstrual synchrony. There was no significant association between menstrual synchrony and personal hygiene score (p<0.01). The phenomenon of menstrual synchrony may be related to various factors. The results failed to demonstrate any significant difference between synchronised and non-synchronised subjects in detecting the steroid by sense of smell. However, the odours associated with menstrual blood or vaginal discharge might have an effect on menstrual synchrony.

Key message points

- Menstrual synchrony was found among the medical students investigated in this study.
- 3α-Androstenadienol may not be the chemical causing the synchronisation.
- Other chemicals in menstrual bleeding or vaginal discharge may be responsible for menstrual synchrony.

Exclusion criteria for the study were married students or those with a boyfriend; irregular menstruation; gynaecological, metabolic or medical problems; and usage of the oral contraceptive pill or any other hormones.

The total population of female students at RCMP was approached and everyone agreed to participate (n = 120). The total number of subjects analysed was 88 (as some failed to remember their menstrual dates or could not attend the smell test), which was divided into three groups: best friends (Group 1, n = 74), roommates (Group 2, n = 6) and both best friends and roommates (Group 3, n = 8).

The structured interview consisted of demographic data (age, ethnicity and religion), questions on menstrual history (age of menarche, characteristics of menstrual cycle) and personal hygiene (cleaning private parts, using clean underwear, having vaginal discharge). The menstrual synchrony scores were calculated as recommended by Weller and Weller.3

In order to detect the subjects’ ability to smell odours the olfactory threshold detection test was done according to the methodology of Hummel et al.10 using ten concentrations of 3α-androstenol (Steraloids Inc., Newport, RI, USA).

One sample t-test was used for each unit readings to determine the existence of menstrual synchrony. Each pair synchrony score was compared with its cut-off point cycle score. Student’s t-test was used to compare quantitative data and the Chi-square test was used to compare qualitative data. A value of p<0.05 was considered to be significant. Non-parametric tests were used for threshold data and the Chi-square test was used to compare menstrual synchrony scores. Student’s t-test was used to determine the threshold difference between synchronised and non-synchronised pairs.

Ethical approval
Ethical approval for the study was obtained from the RCMP Ethical Committee. This study formed part of an elective programme for medical students.

Results
The overall mean values for the absolute onset difference of menstruation between pairs and ‘cut-off point of midcycle point’ were 7.09 ± 4.89 and 7.48 ± 0.68, respectively. After subtracting each synchrony score from the expected onset difference, the mean difference of data was found to be 0.391 for the overall population. When divided by their expected cycle score, 59.1% of the couples were found to have synchrony. The corresponding figures for those who were only best friends (Group 1), those who were only roommates (Group 2) and those who were both best friends and roommates (Group 3) were 59.5%, 66.7% and 50.0%, respectively. Evidence for the possibility of menstrual synchrony was demonstrated for all three groups (Table 1).

<table>
<thead>
<tr>
<th>Group</th>
<th>Total subjects</th>
<th>Synchronised subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only best friends (Group 1)</td>
<td>74 (84.1%)</td>
<td>44 (59.5%)</td>
</tr>
<tr>
<td>Only roommates (Group 2)</td>
<td>6 (6.8%)</td>
<td>4 (66.7%)</td>
</tr>
<tr>
<td>Both best friend and roommates (Group 3)</td>
<td>8 (9.1%)</td>
<td>4 (50.0%)</td>
</tr>
<tr>
<td>Overall</td>
<td>88 (100.0%)</td>
<td>52 (59.1%)</td>
</tr>
</tbody>
</table>

The mean age of the subjects was 21.4 ± 1.7 years and was in the range 18–29 years. The time since menarche was 8.62 ± 2.16 years in synchronised subjects and 9.5 ± 1.99 years in non-synchronised subjects (p = 0.06). The length of menstrual flow was 6.96 ± 1.64 days in synchronised women as compared to 7.57 ± 2.28 days in non-synchronised women (p = 0.152). The majority (55.8%) of synchronised subjects had moderate bleeding, while heavy bleeding was found in 37.5% of non-synchronised subjects. When subjects were divided into two groups of heavy and non-heavy bleeders, a significant difference was found between synchronised and non-synchronised subjects (p<0.001). Some 57.1% of non-synchronised subjects reported bleeding heavily as compared to 23.2% of synchronised subjects.

No subject was found to be anosmic. There was no difference between synchronised and non-synchronised women in the detection threshold for 3α-androstenol (p = 0.365, Mann-Whitney test) when subjects were categorised into two groups (i.e. with or without any difference in the ability to smell). This indicates that olfactory ability to detect 3α-androstenol did not differ between the two groups.

The hygiene score was found to be higher among non-synchronised subjects (9.50 ± 1.93) as compared to synchronised ones (8.62 ± 2.16) (p<0.05). There was a statistically significant difference in the mean hygiene score between synchronised and non-synchronised subjects (p<0.05) (Table 2).

No significant correlation was found between the personal hygiene score and the score of the ability to smell 3α-androstenol threshold (p = 0.541). When subjects were classified according to their menstrual synchrony, no significant correlation was found between the two variables, neither for synchronised (p = 0.649) nor for non-synchronised subjects (p = 0.671).

The subjects’ exposure to various smells as reported by them was compared for synchronised and non-synchronised subjects. No significant differences were found in terms of exposure to cigarette smoke (p = 0.514), male perfume (p = 0.08), female perfume (p = 0.134), soup scent (p = 0.134), male sweat odour (p = 0.210) or other smells (p = 0.192). However, synchronised subjects reported a greater exposure to female sweat odour (44.3%) compared to non-synchronised subjects (14.8%) (p = 0.015).

Discussion
This study demonstrated the possibility of the existence of menstrual synchrony among medical students at RCMP who were best friends, roommates or both best friends and roommates with a rate of 50–67%. This finding is in accordance with those of other researchers in either human or animal subjects and is discordant with findings from lesbians living together.11 Menstrual synchrony among RCMP medical students may be due to intensive contact and increased exposure to body pheromones, which may be

<table>
<thead>
<tr>
<th>Variable</th>
<th>Synchronised subjects [mean (SD)] (n = 52)</th>
<th>Non-synchronised subjects [mean (SD)] (n = 38)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3α-Androstenol threshold</td>
<td>1.50 (0.90)</td>
<td>2.11 (1.92)</td>
</tr>
<tr>
<td>Hygiene score</td>
<td>8.62 (2.16)</td>
<td>9.50 (1.93)</td>
</tr>
</tbody>
</table>
Menstrual synchrony was found in 59% of our study population. However, the ability to smell 3α-androstenol was found to be similar between the two groups of synchronised and non-synchronised subjects. Other chemical compounds present in menstrual blood or vaginal discharge might be responsible for the synchronisation since the personal hygiene score was found to be lower in synchronised subjects.

Conclusions

Menstrual synchrony was found in 59% of our study population. However, the ability to smell 3α-androstenol was found to be similar between the two groups of synchronised and non-synchronised subjects. Other chemical compounds present in menstrual blood or vaginal discharge might be responsible for the synchronisation since the personal hygiene score was found to be lower in synchronised subjects.
Is \(3\alpha\)-androstenol pheromone related to menstrual synchrony?

Shayesteh Jahanfar, Che Haslinawati Che Awang, Raihan Abd Rahman, Rinni Damayanti Samsuddin and Chin Pui See

J Fam Plann Reprod Health Care 2007 33: 116-118
doi: 10.1783/147118907780254042

Updated information and services can be found at:
http://jfprhc.bmj.com/content/33/2/116

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/