FAMILY PLANNING IN CLINICAL PRACTICE/JOURNAL REVIEW

Table 2 Key points to note regarding Implanon® removal

- When encountering difficulty removing an Implanon use ultrasound (minimum 10 Hz power).
- After ultrasound location, mark the upper and lower ends of the Implanon on the skin.
- Ensure the arm is not moved after this stage.
- Proceed slowly, checking the position of the Implanon at all times by palpation.
- Take particular care if the Implanon has been incorrectly placed too far up the arm, near the axilla.
- The key to these problems lies in prevention, by using the correct insertion technique. Proper placement of the implant is more likely if the practitioner has undergone a training programme as specified by the FFPRHC.

Removal is usually fairly straightforward. The ultrasound will give a guide as to whether there are any other structures near the Implanon. Provided the Implanon has been inserted one-third of the way up the arm, even though it may be below the fascia and in muscle, removal is usually not a problem. The biggest difficulty occurs when the Implanon is inserted too high up in the arm. This is when it may come into play. Exactly where the incision is made depends on the surrounding structures. Ultrasound will detect how close the Implanon is to the skin and the first attempts at removal should always be where it is most superficial. Occasionally, an Implanon will have been incorrectly inserted at quite an acute angle into the arm with the distal end deep.

The recommended local anaesthetic is 1% lignocaine with adrenaline for a bloodless field. About 2 ml is needed, divided between skin and below the fascia. An incision is then made longitudinally, slightly wider than the diameter of the small finger of the operator, so that the finger can be introduced to check the position of the Implanon by touch. After the skin incision, the subcutaneous tissue and fat are separated by blunt dissection down to the fascia. Skin retractors are then inserted and the fascia is opened using forceps scissors and blunt dissection. At all stages the little finger is used to check the position of the Implanon. When the Implanon is in muscle it can be quite difficult still to feel until below the fascia. If it is in muscle, again blunt dissection is used, and eventually the Implanon will be seen and it can be grabbed using the modified vasectomy forceps. The incision is closed with either mattress suturing or subcuticular suturing. The key points to note regarding Implanon removal are summarised in Table 2.

Discussion
The author has to date removed 31 impalpable Implanon devices using this technique, which has proved safe, practical and does not require a general anaesthetic. He has not (yet) failed to remove any Implanon devices that have been referred to him. In the majority of these cases, attempts at removal had already been made either by general practitioners, consultant gynaecologists, consultant surgeons or consultant orthopaedic surgeons.

Implanon devices do not migrate to these deep positions. They can only shift along the insertion track and this can only happen in the first hours following insertion. The implants that the author has removed have evidently been poorly inserted and this suggests that the training programme advocated by the FFPRHC should be mandatory. It is unreasonable to blame the problem for these removal problems. Merki Feld et al. also emphasise this point.4

Statements on funding and competing interests
Funding. None identified.
Competing interests. None identified.

References
1 Details supplied by Organon on the number of cases reported.

Journal Review
Ectopic pregnancies and reproductive capacity after Chlamydia trachomatis positive and negative: a historical follow-up study. Andersen B, Ostergaard L, Puho E, Skriver MV, Schonheyder HC. Sex Transm Dis 2005; 32: 377–381

Female patients diagnosed and treated for chlamydial infection frequently ask about the implications for their future reproductive capacity. One of the issues with screening asymptomatic women is whether early diagnosis and treatment is beneficial. The aim of this Danish study was to investigate reproductive outcomes in women after chlamydia testing. The study was historical, using health registers for hospital discharges and a database of women tested for Chlamydia trachomatis between 1984 and 1993.

The authors correctly identify several sources of bias in their discussion. However, they do not identify that a source of bias is that the cohort of women screened includes a mixed group; asymptomatic women, asymptomatic women, contacts of men with infection and women screened prior to a transvaginal procedure [abortion, intrauterine device (IUD) insertion and hysterosalpingography]. This means that within their cohort women may have other conditions that affect fertility, namely symptomatic pelvic infection, abortion and IUD insertion in the presence of C. trachomatis. The group of women attending for hysterosalpingography are presumably attending for investigation of their subfertility? The reasons for attendance are not documented so one cannot determine which of these groups dominate the cohort studied. The focus of the study is future first pregnancy; however, the reasons for this are unclear, especially as they include women who are tested prior to an abortion. Another concern is that the study is based on enzyme-linked immunosorbent assay (ELISA) testing (sensitivity 50–60%), and not the more sensitive nucleic acid amplification tests such as polymerase chain reaction, so there is an increased likelihood of false-negative test results. There is also no information on previous chlamydial infection, previous pelvic inflammatory disease (PID), sexual behaviours and condom use, how the women with positive results were treated, and whether partner notification and effective treatment occurred.

So, does this study enable us to give an informed answer to women with a positive chlamydia test result? The good news is that in this study, women with positive chlamydia ELISA results (n = 1882) had no significant delay in giving birth, or an increase in ectopic pregnancy rates when compared with the women with negative chlamydia results (n = 11 811). The bad news is that the study design has introduced bias and confounding and so does not provide evidence to enable us to confidently reassess women about future fertility. There is evidence from previous observational studies and one randomised controlled trial on selective screening done in the USA that C. trachomatis screening reduces the risk of PID and consequently ectopic pregnancy over time. I am not aware of such evidence with regard to future fertility including all pregnancy outcomes.

Reviewed by Helen Mitchell, FFRCOG, DFFP Consultant in Sexual and Reproductive Health, Mortimer Market Centre, London, UK


The bone density associated with Depo-Provera® is sometimes balanced against the effect of pregnancy on bone. During pregnancy and lactation there is a reduction in bone mineral density (BMD) of up to 5%. However, the effect is transient and it would appear from this review that pregnancy and lactation do not adversely affect BMD or fracture risk in the long term. A number of studies have shown that parous women and those with a long period of lactation have no different, or lower, fracture risk than their nulliparous peers. Studies looking at the effect of lactation have not shown any greater risk of fracture in women who breastfed compared to those who bottle-fed. In fact several studies have demonstrated higher BMD and significant reduction in fracture risk with increasing parity. The reason is unknown but may be partly due to lifestyle factors.

Reviewed by Louise Melvin, MRCOG, DFFP Specialist Registrar, Simpson’s Centre for Reproductive Health, Edinburgh, UK
Ectopic pregnancies and reproductive capacity after *Chlamydia trachomatis* positive and negative test results: a historical follow-up study

Helen Mitchell

*J Fam Plann Reprod Health Care* 2005 31: 321
doi: 10.1783/jfp.31.2.321a