A novel therapy with testosterone and sildenafil for erectile dysfunction in patients on renal dialysis or after renal transplantation

Ratna Chatterjee, PhD, MFFP. Departments of Obstetrics and Gynaecology; Susan Wood, BSc, Department of Nephrology; Hugh H McGarrigle, PhD. Departments of Obstetrics and Gynaecology; William R Lees, FRCP, Department of Nuclear Medicine and Radiology; David J Ralph, FRCS, MSc, Institute of Urology and Nephrology; Guy H Neild, FRCP, MD. Institute of Urology and Nephrology, University College Hospitals, London, UK

Correspondence: Dr Ratna Chatterjee, University College Hospital, Reproductive Medicine Unit, Huntley Street, London WC1E 6AU, UK. Fax: +44 (0) 20 7380 9600. E-mail: rchatterjeel@aol.com

(Accepted 2 February 2004)

Journal of Family Planning and Reproductive Health Care 2004; 30(2): 88–90

Abstract

Background We undertook a prospective pilot study in a small cohort of patients with renal replacement therapy to determine the cause of erectile dysfunction (ED) and evaluate the role of testosterone replacement therapy and sildenafil.

Methods We investigated 12 patients (eight post-transplant and four on haemodialysis) who presented with ED for hypogonadism and cavernosal insufficiency. We assessed sexual performance before and after treatment by a questionnaire method based on the modified International Index of Erectile Function (IIEF) and National Institutes of Health (NIH) rating. Patients received 250 mg intramuscular monthly injections of testosterone cypionate and 50–100 mg sildenafil orally once or twice weekly for 12 months. Therapeutic response was considered good if the patient could maintain an erection adequate for successful sexual intercourse (NIH criteria) and had a marked improvement in the overall sexual performance (IIEF scoring).

Results Before treatment all patients had severe ED with a poor IIEF score while 11 also had diminished libido. Eleven patients had diminished testicular volume and six had elevated follicle-stimulating hormone levels suggestive of germ cell damage. All patients had a good response to the therapeutic trial of testosterone and sildenafil.

Conclusions Therapy with testosterone and sildenafil may be indicated for those with both cavernosal arteriogenic insufficiency and reproductive hormone abnormalities. Further longer-term data are needed to determine the safety and efficacy of this novel regimen.

Key message points
- Patients with erectile dysfunction (ED) who were receiving dialysis or had renal transplantation were shown to have cavernosal arteriogenic insufficiency and abnormal reproductive hormone profiles.
- Investigations to determine the aetiology of ED may help to guide therapeutic options.
- Therapy with sildenafil and testosterone should be considered in patients who have cavernosal arteriogenic insufficiency and abnormal reproductive hormone profiles. Patients receiving immunosuppressant drugs require monitoring as they are at higher risk of the carcinogenic and other side effects of testosterone.

Introduction

Erectile dysfunction (ED) affects 40–100% of men on renal replacement therapy, including dialysis and transplantation.1,2 The aetiology is usually multifactorial. The main organic factors are primary3,4 or secondary hypogonadism (hypothalamic pituitary dysfunction, hyperprolactinaemia) and penile arterial insufficiency.5

Previous attempts at therapy have included intracavernosal injections of vasoactive agents, such as alphaprostil, papaverine6,7 or penile prosthesis.8 All are associated with poor results due to poor tolerance, prosthetic infection and cylinder leak.9 The use of the oral agent, type 5 phosphodiesterase inhibitor, sildenafil citrate, has been used successfully in patients on renal dialysis10 and after renal transplantation.11

Vasoactive drugs, however, may fail to correct sexual dysfunction if libido is also affected. Patients with renal transplant and dialysis may have testosterone deficiency, which can cause reduced libido.2,3 Reports are conflicting on the value of testosterone in renal patients, especially as testosterone levels may return to normal in some patients after transplantation.2 However, patients may have normal testosterone levels with diminished Leydig cell reserve, which can contribute to symptoms of androgen insufficiency including diminished libido.12 Other advantages of testosterone include its potential cavernosal vasodilator activity.13 A meta-analysis of studies confirms the beneficial effects of testosterone supplementation in patients with ED.14 A similar improvement is expected in patients with renal replacement, especially if they have hypogonadism.

We undertook a pilot study in a small cohort of patients with renal replacement or on dialysis to determine the cause of ED and to institute a trial of sildenafil and testosterone therapy, as this treatment had been successful in a group of patients with haematological malignancies.15

Methods

We prospectively studied 12 patients over the period 1997–2001, who presented with ED, either after renal transplantation (n = 8) or while on haemodialysis (n = 4). Clinical data are given in Table 1. All patients older than 50 years and those with a history of cardiovascular disease were screened for potential contraindications before treatment.

We assessed testicular function by measuring testicular volume (ultrasound and orchidometer).16 Hyperplasia or adenoma was excluded by prostatic ultrasound. All patients had an endocrine profile (Table 2). All hormones were assayed by standard radio-immunoassay using double antibody techniques.17

References

Colour flow Doppler was undertaken to assess haemodynamic function of the penis after injection of a vasoactive agent to induce an erection. The response to intracavernosal injection was graded as: 0 = nil erection; I = tumescence only; II = partial and III = full rigidity according to our previously published data.

All patients had a therapeutic trial of 12 months of 250 mg intramuscular monthly injections of testosterone cypionate and 50–100 mg sildenafil orally, once or twice weekly. Therapeutic response was considered good if the patient could maintain an erection adequate for successful sexual intercourse measured by the National Institute of Health (NIH) rating and International Index of Erectile Function (IIEF) scores. The regime was in accordance with our previously published data. All patients gave written informed consent to participate in this study as approved by the local research ethics committee of the University College London Hospitals Trust.

Results
Table 1 shows the clinical features and Table 2 the baseline endocrine and investigative data of the patients at the onset of the study. All transplant patients had renal transplantation at least 12 months before and had stable renal function for 6 months before and during the study period. No patients had contraindications to therapy. Only one patient (Patient 10) did not have diminished testicular volume and six had elevated follicle-stimulating hormone levels. While only two patients had low testosterone levels, others had a variety of reproductive hormone abnormalities (Table 2). All patients responded to treatment (Table 3). There were no adverse effects or deterioration of renal function and compliance was excellent.

Table 1 Clinical data

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age (years)</th>
<th>Primary renal diagnosis</th>
<th>Other characteristics</th>
<th>RRT</th>
<th>Sexual dysfunction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Duration (years)</td>
</tr>
<tr>
<td>1</td>
<td>40</td>
<td>IDDM</td>
<td>Retinopathy, porphyria, peripheral vascular disease, osteoporosis</td>
<td>CRT</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>29</td>
<td>Prune belly syndrome</td>
<td>Left orchidectomy, IDDM, Peyronie’s disease</td>
<td>LRT</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>44</td>
<td>Amyloid</td>
<td>Bilateral hip and knee arthropathy, osteoporosis</td>
<td>HD</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>56</td>
<td>Polycystic kidney</td>
<td>Mild ischaemic heart disease, Still’s disease</td>
<td>CRT</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>39</td>
<td>Prune belly syndrome</td>
<td>Gout, duodenal ulcer, morbid obesity, orchidopexy</td>
<td>CRT</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>43</td>
<td>Hypertension</td>
<td>Hyperaldosteronism, adrenalectomy</td>
<td>CRT*</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>27</td>
<td>Obstructive uropathy</td>
<td>Cytomegalovirus, chronic active hepatitis, positive hepatitis C</td>
<td>HD*</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>48</td>
<td>IDDM</td>
<td>Retinopathy, neuropathy</td>
<td>CRT</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>51</td>
<td>Chronic glomerulonephritis</td>
<td>Mild ischaemic heart disease</td>
<td>CRT</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>49</td>
<td>Obstructive uropathy</td>
<td></td>
<td>HD</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>33</td>
<td>IDDM</td>
<td>Retinopathy, neuropathy</td>
<td>HD</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>45</td>
<td>Chronic glomerulonephritis</td>
<td></td>
<td>CRT</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 2 Endocrine and investigative data at the onset of the study

<table>
<thead>
<tr>
<th>Patient</th>
<th>Testicular volume (ml)</th>
<th>Mean penile Doppler flow (PSV cm/second)</th>
<th>FSH (IU/l)</th>
<th>LH (IU/l)</th>
<th>Prolactin (mU/l)</th>
<th>Testosterone (nmol/l)</th>
<th>Free testosterone (%)</th>
<th>T/LH ratio</th>
<th>SHBG (mmol/l)</th>
<th>Androstenedione (nmol/l)</th>
<th>DHEAS (mmol/l)</th>
<th>E2 (pmol)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Right</td>
<td>Left</td>
<td>Right</td>
<td>Left</td>
<td>12.0</td>
<td>12.0</td>
<td>29.7</td>
<td>3.1</td>
<td>900</td>
<td>16.1</td>
<td>1.4</td>
<td>5.20</td>
</tr>
<tr>
<td>2</td>
<td>Absent</td>
<td>10.0</td>
<td>7.0</td>
<td>38.8</td>
<td>16.0</td>
<td>1000</td>
<td>9.4</td>
<td>1.2</td>
<td>0.58</td>
<td>28.0</td>
<td>12.0</td>
<td>14.0</td>
</tr>
<tr>
<td>3</td>
<td>3.0</td>
<td>3.0</td>
<td>25.0</td>
<td>19.4</td>
<td>12.4</td>
<td>100</td>
<td>10.8</td>
<td>1.8</td>
<td>0.88</td>
<td>23.0</td>
<td>6.0</td>
<td>8.0</td>
</tr>
<tr>
<td>4</td>
<td>8.0</td>
<td>8.0</td>
<td>15.0</td>
<td>12.2</td>
<td>10.0</td>
<td>120</td>
<td>12.8</td>
<td>1.8</td>
<td>1.22</td>
<td>32.2</td>
<td>12.0</td>
<td>18.0</td>
</tr>
<tr>
<td>5</td>
<td>5.5</td>
<td>3.8</td>
<td>6.5</td>
<td>10.6</td>
<td>16.8</td>
<td>90</td>
<td>11.9</td>
<td>1.4</td>
<td>0.97</td>
<td>20.0</td>
<td>10.0</td>
<td>14.0</td>
</tr>
<tr>
<td>6</td>
<td>11.0</td>
<td>12.0</td>
<td>20.0</td>
<td>11.0</td>
<td>2.0</td>
<td>200</td>
<td>11.0</td>
<td>1.9</td>
<td>5.5</td>
<td>20.0</td>
<td>12.0</td>
<td>18.0</td>
</tr>
<tr>
<td>7</td>
<td>14.0</td>
<td>14.0</td>
<td>18.0</td>
<td>5.5</td>
<td>5.6</td>
<td>800</td>
<td>25.8</td>
<td>1.8</td>
<td>4.61</td>
<td>30.0</td>
<td>20.0</td>
<td>12.0</td>
</tr>
<tr>
<td>8</td>
<td>8.0</td>
<td>10.0</td>
<td>15.0</td>
<td>16.4</td>
<td>10.8</td>
<td>340</td>
<td>8.0</td>
<td>1.4</td>
<td>0.74</td>
<td>30.0</td>
<td>20.0</td>
<td>18.0</td>
</tr>
<tr>
<td>9</td>
<td>8.0</td>
<td>8.0</td>
<td>20.0</td>
<td>12.2</td>
<td>18.2</td>
<td>300</td>
<td>7.9</td>
<td>1.8</td>
<td>0.43</td>
<td>28.0</td>
<td>18.0</td>
<td>12.0</td>
</tr>
<tr>
<td>10</td>
<td>17.0</td>
<td>16.0</td>
<td>30.0</td>
<td>8.8</td>
<td>7.4</td>
<td>600</td>
<td>27.4</td>
<td>1.6</td>
<td>3.70</td>
<td>31.0</td>
<td>10.3</td>
<td>10.0</td>
</tr>
<tr>
<td>11</td>
<td>8.0</td>
<td>8.0</td>
<td>18.0</td>
<td>18.0</td>
<td>12.0</td>
<td>400</td>
<td>9.8</td>
<td>1.2</td>
<td>0.82</td>
<td>30.0</td>
<td>10.0</td>
<td>18.0</td>
</tr>
<tr>
<td>12</td>
<td>10.0</td>
<td>10.0</td>
<td>40.0</td>
<td>16.0</td>
<td>6.2</td>
<td>450</td>
<td>14.0</td>
<td>2.1</td>
<td>2.26</td>
<td>14.0</td>
<td>4.7</td>
<td>19.0</td>
</tr>
<tr>
<td>Range</td>
<td>3–17</td>
<td>3–16</td>
<td>6.5–40</td>
<td>1–38.8</td>
<td>2–18.2</td>
<td>120–1000</td>
<td>13.75</td>
<td>1.2–2.1</td>
<td>0.4–5.5</td>
<td>14–47</td>
<td>4.5–20</td>
<td>8–19</td>
</tr>
<tr>
<td>Median</td>
<td>8.0</td>
<td>10.0</td>
<td>18.0</td>
<td>14.1</td>
<td>10.4</td>
<td>370.0</td>
<td>11.45</td>
<td>1.7</td>
<td>1.1</td>
<td>29.0</td>
<td>11.15</td>
<td>15.0</td>
</tr>
</tbody>
</table>

DHEAS, dehydroepiandrosterone sulphate; E2, oestradiol; FSH, follicle-stimulating hormone; LH, luteinising hormone; PSV, peak systolic velocity; SHBG, sex hormone-binding globulin; T, testosterone.
Sildenafil monotherapy is likely to be less effective in patients who have diminished libido due to Leydig cell insufficiency.21,22 Since sildenafil only works on a sexually stimulated penis,23 addition of testosterone can be synergistic. Testosterone can improve symptoms such as energy, drive and generalised symptoms of depression and fatigue. Some trials have shown the efficacy of testosterone in ED patients.13,24,25 Dual therapy with testosterone and sildenafil may be beneficial in this group of patients. We recommend selection of patients by excluding those with contraindications to either medication.

The mixed aetiology of ED in these patients suggests that similar patients with ED should have investigations to determine the aetiology of the condition. Therapy with testosterone and sildenafil may be indicated for those with both cavernosal arterial insufficiency and reproductive hormone abnormalities. We recommend long-term follow-up of these patients for cardiovascular effects, in addition to prostate specific antigen assays and prostatic ultrasound,26 as patients taking immunosuppressant drugs are at higher carcinogenic risk on testosterone. A prospective study using the above regime in a large sample size of patients using the same therapeutic regimen.13,24,25 Fatigue. Some trials have shown the efficacy of testosterone injection of prostaglandin E1.

Acknowledgements
The authors acknowledge members of the staff of the Departments of Reproductive Medicine, Nuclear Medicine and Radiology, Urology, and the Antrim and Mary Rankin Wards for their support in conducting the study.

References
A novel therapy with testosterone and sildenafil for erectile dysfunction in patients on renal dialysis or after renal transplantation

Ratna Chatterjee, Susan Wood, Hugh H McGarrigle, William R Lees, David J Ralph and Guy H Neild

J Fam Plann Reprod Health Care 2004 30: 88-90
doi: 10.1783/147118904322995438

Updated information and services can be found at:
http://jfprhc.bmj.com/content/30/2/88

Email alerting service

These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/